
Supplementary Materials: “Confidence Intervals for

Sparse Penalized Regression with Random Designs”

A Basics in variational inequalities and the normal man-

ifold

The tangent cone to S at x is defined as

TS(x) = {w ∈ Rn| ∃{xk} ⊂ S and {τk} ⊂ R such that xk → x, τk → 0, and (xk − x)/τk → w} .

The inner product of any element in TS(x) and any element in the normal cone NS(x) is

nonpositive.

Consider a problem of minimizing a objective function F : Rn → R over a closed and

convex feasible set S. The well-known first-order necessary condition is that, if x∗ ∈ S is a

local solution to this minimization problem and F is differentiable at x∗, then the following

variational inequality holds for x∗:

0 ∈ ∇F (x∗) +NS(x∗).

If the set S is a polyhedral convex set, then the Euclidean projector ΠS is a piecewise affine

function on Rn, that coincides with an affine function on each of finitely many n-dimensional

polyhedral convex sets. This family of sets is called the normal manifold (Robinson, 1995)

of S, and each set in this family is called an n-cell. The union of all n-cells in the normal

manifold is Rn. Faces of the n-cells are called cells, and the relative interiors of all cells form a

partition of Rn. More details can be found in Facchinei and Pang (2003) and Robinson (1992,

1995).

B-differentiability is related to directional differentiability, and it is stronger than direc-

tional differentiability. If df(x0) is the B-derivative of a function f : Rn → Rm at x0, then for

each direction h ∈ Rn, df(x0)(h) is exactly the directional derivative of f at x0. In addition,

B-differentiability requires df(x0)(·) to be a first order approximation of f(x0 + ·) uniformly

in all directions.
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Cell Defining constraints Critical cone Defining constraints

C0
i ti = 0, βi = 0 K0

i ti − βi > 0, ti + βi > 0

C1
i ti = βi, ti > 0 K1

i ti − βi > 0

C2
i ti = −βi, ti > 0 K2

i ti + βi > 0

C3
i ti = βi, ti 6 0 K3

i ti = −βi, ti > 0

C4
i ti = −βi, ti 6 0 K4

i ti = βi, ti > 0

C5
i ti − βi > 0, ti + βi > 0 K5

i None

C6
i ti − βi > 0, ti + βi 6 0 K6

i ti = −βi
C7
i ti − βi 6 0, ti + βi 6 0 K7

i ti = 0, βi = 0

C8
i ti − βi 6 0, ti + βi > 0 K8

i ti = βi

Table 1: Cells in the normal manifold of Si and the associated critical cones

C5
i C6

i C7
i C8

i

ψ0 A1 A2 A4 A3

ψ1 A1 A1 A3 A3

ψ2 A1 A2 A2 A1

ψ3 A2 A2 A4 A4

ψ4 A3 A4 A4 A3

ψ5 A1 A1 A1 A1

ψ6 A2 A2 A2 A2

ψ7 A4 A4 A4 A4

ψ8 A3 A3 A3 A3

Table 2: Matrix representations of ψj for j = 0, · · · , 8

B Proofs

Proof of Lemma 1. Without loss of generality, suppose (β̃0, β̃, t̃) is a local optimal solution

to (9). Since Pλi(·) is nondecreasing and m is positive, it is obvious that t̃i = |β̃i| for all

i = 1, · · · , p. Denote the objective function in (1) by g1(β0, β) and the objective function in

(9) by g2(β0, β, t). Then there exists a neighborhood B1 at (β̃0, β̃) in Rp+1, such that

g2(β̃0, β̃, t̃) 6 g2(β0, β, t) for each (β0, β) ∈ B1 and ti = |βi|, i = 1 · · · , p.

That is,

g1(β̃0, β̃) 6 g1(β0, β) for each (β0, β) ∈ B1.

Therefore, (β̃0, β̃) is a local optimal solution to (1).
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Piece Defining constraints

E0
i |ti − βi| 6 1/g(N), |ti + βi| 6 1/g(N)

E1
i |ti − βi| 6 1/g(N), ti + βi > 1/g(N)

E2
i ti − βi > 1/g(N), |ti + βi| 6 1/g(N)

E3
i |ti − βi| 6 1/g(N), ti + βi < −1/g(N)

E4
i ti − βi < −1/g(N), |ti + βi| 6 1/g(N)

E5
i ti − βi > 1/g(N), ti + βi > 1/g(N)

E6
i ti − βi > 1/g(N), ti + βi < −1/g(N)

E7
i ti − βi < −1/g(N), ti + βi < −1/g(N)

E8
i ti − βi < −1/g(N), ti + βi > 1/g(N)

Table 3: E0
i , · · · , E8

i in the plane (βi, ti)

Conversely, suppose (β̃0, β̃) is a local optimal solution to (1). Then there exists a neigh-

borhood B2 at (β̃0, β̃) in Rp+1, such that

g1(β̃0, β̃) 6 g1(β0, β) for each (β0, β) ∈ B2.

Let t̃i = |β̃i| for all i = 1, · · · , p, then we have

g2(β̃0, β̃, t̃) 6 g2(β0, β, t) for each (β0, β) ∈ B2 and ti = |βi|, i = 1 · · · , p.

Consequently,

g2(β̃0, β̃, t̃) 6 g2(β0, β, t) for each (β0, β) ∈ B2 and ti > |βi|, i = 1 · · · , p.

Thus, (β̃0, β̃, t̃) is a local optimal solution to (9).

The second part of Lemma 1 is straightforward and we omit its proof.

�

Proof of Lemma 2. According to Assumption 3 and Lemma 1 we know that (β̃0, β̃, t̃) is a

local optimal solution to (9). We will prove that it is also a locally unique optimal solution

by showing that LK is a global homeomorphism.

From (12), we can write the normal and tangent cones to S at (β̃0, β̃, t̃) as

NS(β̃0, β̃, t̃) = {0} ×NS1(β̃1, t̃1)× · · · ×NSp(β̃p, t̃p),

and

TS(β̃0, β̃, t̃) = R× TS1(β̃1, t̃1)× · · · × TSp(β̃p, t̃p).

3



Let q̃ be as defined in Assumption 3, and let q̃0 = E[−2(Y − β̃0 −
∑p

i=1 β̃iXi)]. Since

−f0(β̃0, β̃, t̃) ∈ NS(β̃0, β̃, t̃), we have

q̃0 = 0 and − (q̃i − 2mβ̃i, P
′
λi

(t̃i) + 2mt̃i) ∈ NSi
(β̃i, t̃i) for each i = 1, · · · , p. (B.1)

If β̃i > 0 for some i = 1, · · · , p, from the definition of Si and (B.1) we have

q̃i − 2mβ̃i = −P ′λi(t̃i)− 2mt̃i.

That is

q̃i = −P ′λi(t̃i),

because t̃i = |β̃i| = β̃i. Similarly, if β̃i < 0, then

q̃i = P ′λi(t̃i);

if β̃i = 0, then

|q̃i| 6 P ′λi(t̃i).

According to (21), for each i = 1, · · · , p we have

Ki =



{(0, 0)} if
(
β̃i = 0 and |q̃i| < |P ′λi(t̃i)|

)
,

{(βi, ti) ∈ R2
+ | βi − ti = 0} if

(
β̃i = 0 and q̃i = −P ′λi(t̃i)

)
,

{(βi, ti) ∈ R2 | βi − ti = 0} if β̃i > 0,

{(βi, ti) ∈ R− × R+ | βi + ti = 0} if
(
β̃i = 0 and q̃i = P ′λi(t̃i)

)
,

{(βi, ti) ∈ R2 | βi + ti = 0} if β̃i < 0,

(B.2)

and

K = R×K1 × · · · ×Kp.

Next, we give an explicit expression for the affine hull of K. Define two matrices M and

N as follows:

M =


1 0

0 Ip

0 Ip

 and N =


1 0

0 Ip

0 −Ip

 .
Construct a matrix Ξ by first adding the common first column of M and N and then adding

the (i + 1)th column of M (N) if the condition in the second or third (fourth or fifth) row of

(B.2) is satisfied. Columns of Ξ form a basis of the affine hull of K. Note that ΞTLΞ = Q,

where Q is defined in Assumption 3. From Proposition 2.5 and Theorem 4.3 of Robinson

(1992), LK is a global homeomorphism. Under Assumption 1(b), it is easy to see that the

partial derivative of f0 at (β̃0, β̃, t̃) is strong. An application of (Robinson, 1995, Theorem
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3) implies that z0 is a locally unique solution to (19), therefore (β̃0, β̃, t̃) is a locally unique

optimal solution to (9).

�

Proof of Lemma 3. The conclusion follows from an application of (Lu and Budhiraja, 2013,

Theorem 4). We verify the assumptions of the latter theorem as follows. Assumption 1 in Lu

and Budhiraja (2013) holds under Assumptions 1 and 2 of this paper according to equations

(13) and (15). Moreover, Assumption 4(a) in Lu and Budhiraja (2013) is satisfied for the

compact set C under Assumption 4(a) of this paper.

�

Proof of Theorem 1. From the proof of Lemma 3 we know that Assumption 1 in Lu

and Budhiraja (2013) holds. According to Lemma 2, Assumption 2 in Lu and Budhiraja

(2013) holds under Assumptions 1-3 of this paper. Furthermore, Assumption 4(a-b) of this

paper guarantees Assumption 4 in Lu and Budhiraja (2013) to be satisfied. Consequently,

conclusions in this theorem follow from (Lu and Budhiraja, 2013, Theorem 7).

�

Proof of Theorem 2. The convergence results for dΠS(zN) and d(fN)S(zN) in Case I

follow from the fact that zN → z0 almost surely and the continuity of dΠS(·) and d(fN)S(·).
Moreover, we can prove the following result using similar arguments in the proof of Corollary

3.2 in Lu (2014): there exists a positive real number φ such that

lim
N→∞

Prob

{
sup

h∈R2p+1

‖ΦN(zN)(h)− LK(h)‖
‖h‖

<
φ

g(N)

}
= 1, (B.3)

which implies that ΦN(zN) converges to LK in probability.

�

Proof of Theorem 3. This theorem can be proved using the same arguments in the proof

of Theorem 3 in Lu et al. (2017).

�

Proof of Lemma 4. To show (48), we use the equation (19) with (13) and (14). With λ = 0,

by plugging (47) into (13), we have

z0 =(βtrue0 , βtrue, ttrue)− f0(βtrue0 , βtrue, ttrue)

=


βtrue0 + 2E(Y − βtrue0 −XTβtrue)

βtrue + 2E[(Y − βtrue0 −XTβtrue)X] + 2mβtrue

ttrue − 2mttrue

 =


βtrue0

(1 + 2m)βtrue

(1− 2m)ttrue

 . (B.4)

Rearranging (B.4) proves (48).

�
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Proof of Theorem 4. Recall that (βtrue0 , βtrue, ttrue) and (β̂0, β̂, t̂) are solutions to

− f0(β0, β, t) ∈ NS(β0, β, t) and − fN(β0, β, t) ∈ NS(β0, β, t) (B.5)

respectively, where

f0(β0, β, t) =


−2E[Y − β0 −

∑p
i=1 βiXi]

−2E[(Y − β0 −
∑p

i=1 βiXi)X]− 2mβ

2mt

 . (B.6)

and

fN(β0, β, t) =


−2N−1

∑N
i=1[yi − β0 −

∑p
j=1 βjxij]

−2N−1
∑N

i=1[(yi − β0 −
∑p

j=1 βjxij)xi]− 2mβ

(P ′λi(ti) + 2mti)
p
i=1

 . (B.7)

By Assumption 1’(a-b), fN almost surely converges to f0 in the space of continuously

differentiable functions on a neighborhood of (βtrue0 , βtrue, ttrue). Moreover, by the functional

central limit theorem, the first p+ 1 component functions of
√
N(fN − f0) weakly converge to

the random function Y : R2p+1 → Rp+1, with Y (βtrue0 , βtrue, ttrue) ∼ N (0,Σ∗10 ). By Assump-

tion 1’(c) and the fact that limN→∞
√
Nλi = ci, the last p component functions of

√
N(fN−f0)

converge to (hi)
p
i=1 =

(
ci

∂2P
∂λi∂ti

(0, ttruei )
)p
i=1

.

By the choice of m, the matrix L∗ defined in (50) is positive definite. This implies

that the normal map L∗K∗ is a global homeomorphism. By (Lu and Budhiraja, 2013, Lemma

1), there exists a neighborhood of f0 such that when fN belongs to that neighborhood the

solutions (β̂0, β̂, t̂) and zN are well defined. We can then proceed similarly to the proof of (Lu

and Budhiraja, 2013, Theorem 7) to show that

√
N(G∗(zN)−G∗(z∗0))⇒ G∗ ◦ (L∗K∗)−1(N (0,Σ∗10 ), h),

which is (54).

�

Proof of Theorem 5. Consider the case where hi = 0 for each i. Note that Σ∗0 =

Σ∗10 0

0 0

.

Let q0 ∈ R and q ∈ Rp. We will simplify the expression of G∗ ◦ (L∗K∗)−1(q0, q, 0). Consider the

minimization problem

min
(β0,β,t)∈K

β2
0 + βT (Σ−mIp)β +

p∑
i=1

mt2i − q0β0 − qTβ,

whose solution satisfies (q0, q, 0) ∈ L∗(β0, β, t)+NK∗(β0, β, t). By the expression of K∗ in (53),

the above problem can be reduced to

min
(β0,β)∈Rp+1

β2
0 + βTΣβ − q0β0 − qTβ,
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whose solution is given by β0 = 1
2
q0 and β = 1

2
Σ−1q. The first p + 1 components of

(L∗K∗)−1(q0, q, 0) are given by (1
2
q0, (

1
2

+m)Σ−1q), so

G∗ ◦ (L∗K∗)−1(q0, q, 0) =

1
2

0

0 1
2
Σ−1

 (q0, q).

Furthermore, since Σ∗10 is the covariance matrix of the first p + 1 components of the random

vector F (βtrue0 , βtrue, ttrue, X, Y ), we can show that

Σ∗10 =

4σ2 0

0 4σ2Σ

 .
Therefore,

G∗ ◦ (L∗K∗)−1(N (0,Σ∗10 ), 0) =

1
2

0

0 1
2
Σ−1

 (N (0,Σ∗10 )) = N (0,

σ2 0

0 σ2Σ−1

).

Furthermore, by modifying the augments in the proof of Theorem 5 in Lu et al. (2017) via

substituting HN of this paper, we can show (55).

�

Below is a lemma that will be used in the proof of Theorem 6.

Lemma 5. Suppose that Assumptions 1’ (a-c), 2, and 4’ (a-b) hold. Then R̂ converges to R

in probability uniformly on compact sets.

Proof of Lemma 5. This lemma is similar to Lemma 5 in Lu et al. (2017) except for different

expressions of R and R̂. It can be proved using a similar argument. Let

T = (L∗K∗)−1

(Σ∗10 )
1
2 0

0 diag(hi)
p
i=1

 and TN = (ΦN(zN))−1

(Σ1
N)

1
2 0

0 diag(ĥi)
p
i=1

 .
Applying Proposition 2 in Lamm et al. (2014), we can check that TN converges to T in

probability uniformly on compact sets. Since G∗ is a full rank matrix, we conclude that R̂

converges to R in probability uniformly on compact sets.

�

Proof of Theorem 6. By Lemma 5, R̂i converges to Ri in C(R2p+1,R) in probability

uniformly on compact sets. Let

ZN =
√
N
(

(β̂true0 , β̂true)− (βtrue0 , βtrue)
)
i

for i = 1, · · · , p+ 1. From (54), ZN converges to Ri(Z) in distribution. Then the conclusions

follow from Lemma 4 in Lu et al. (2017) with uN = R̂i and u = Ri.

�
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C Example 5: Prostate cancer data

Our method (GIC) SVI-Lasso LDPE JM

Est Ind CI Est Ind CI Est Ind CI Est Ind CI

βtrue
1 0.73 [0.44, 1.01] 0.72 [0.42, 1.02] 0.70 [0.47, 0.93] 0.68 [0.03, 1.33]

βtrue
2 0.28 [0.07, 0.49] 0.29 [0.09, 0.50] 0.28 [0.10, 0.46] 0.26 [-0.22, 0.75]

βtrue
3 -0.08 [-0.31, 0.15] -0.07 [-0.33, 0.18] -0.09 [-0.29, 0.11] -0.14 [-0.66, 0.38]

βtrue
4 0.21 [-0.02, 0.45] 0.21 [-0.02, 0.45] 0.21 [0.01, 0.41] 0.21 [-0.31, 0.73]

βtrue
5 0.33 [0.05, 0.60] 0.34 [0.04, 0.63] 0.31 [0.08, 0.54] 0.31 [-0.33, 0.94]

βtrue
6 -0.20 [-0.47, 0.06] -0.18 [-0.45, 0.09] -0.20 [-0.47, 0.07] -0.29 [-1.08, 0.50]

βtrue
7 -0.05 [-0.30, 0.21] -0.02 [-0.27, 0.24] -0.01 [-0.27, 0.25] -0.02 [-0.76, 0.72]

βtrue
8 0.25 [-0.04, 0.54] 0.26 [-0.04, 0.56] 0.24 [-0.03, 0.51] 0.27 [-0.52, 1.05]

Table 4: Estimates and 95% individual CIs of true regression coefficients in the linear model

for different methods computed from prostate cancer data.

In this real data example, we consider the prostate cancer dataset (Tibshirani, 1996)

and compute the individual confidence intervals of the true regression coefficients with the

confidence level 0.95. We use the same 67 training samples studied in Hastie et al. (2001).

The data are standardized at the beginning of our analysis. For our proposed method, we

use the MCP penalty with the parameter a = 2 and choose the best tuning parameter λ by

GIC. Table 4 shows the estimates and confidence intervals of different parameters in the linear

model. By checking whether each confidence interval contains zero or not, we can observe that

our method and the SVI-Lasso method deliver the same inference results. However, compared

with the SVI-Lasso method, the confidence intervals constructed by our proposed method

are shorter in most cases. The results of our proposed method and the results of LDPE are

also comparable. Compared with the other three methods, for this real data example, the

confidence intervals constructed by the JM method are overall wider.

D Example: Inference of the population penalized pa-

rameter

Consider the following true linear model

Y = 2X1 +X2 + 3ε,

where ε ∼ N (0, 1). The covariance matrix of (X1, X2)
T is Σ where Σ11 = Σ22 = 1 and

Σ12 = Σ21 = 0.5. If we use the LASSO penalty and choose m = 0, the objective function (9)
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in the manuscript is

min
β0,β,t

(β∗ − β)Σ(β∗ − β)T + β2
0 + σ2 + λ

p∑
i=1

ti

s.t. ti − βi > 0, i = 1, · · · , p,

ti + βi > 0, i = 1, · · · , p,

where β∗ = (2, 1) is the true parameter.

Suppose that λ ≤ 3. Let (β̃0, β̃1, β̃2, t̃1, t̃2) = (0, 2− λ
3
, 1− λ

3
, 2− λ

3
, 1− λ

3
). We can check

that f0(β̃0, β̃1, β̃2, t̃1, t̃2) = (0,−λ,−λ, λ, λ)T . In addition, we have

NS(β̃0, β̃1, β̃2, t̃1, t̃2) = NR(β̃0)×NS1(β̃1, t̃1)×NS2(β̃2, t̃2),

where

S1 = {(β1, t1)|t1 − β1 ≥ 0, t1 + β1 ≥ 0}

S2 = {(β2, t2)|t2 − β2 ≥ 0, t2 + β2 ≥ 0}.

Furthermore, we can check that

NR(β̃0) = {0}, NS1(β̃1, t̃1) = NS2(β̃2, t̃2) = {(v1, v2) ∈ R2|v1 = −v2}.

Therefore, we have

−f0(β̃0, β̃1, β̃2, t̃1, t̃2) = (0, λ, λ,−λ,−λ)T ∈ NS(β̃0, β̃1, β̃2, t̃1, t̃2).

So (β̃0, β̃1, β̃2, t̃1, t̃2) = (0, 2− λ
3
, 1− λ

3
, 2− λ

3
, 1− λ

3
) satisfies the variational inequality (17) and

z0 =(β̃0, β̃1, β̃2, t̃1, t̃2)− f0(β̃0, β̃1, β̃2, t̃1, t̃2)

=(0, 2 +
2λ

3
, 1 +

2λ

3
, 2− 4λ

3
, 1− 4λ

3
).

If λ = 3, we can check that (z0)3 = −(z0)5 = 3, ((z0)3, (z0)5) ∈ C4
2 , and therefore ΠK , G and

(LK)−1 are all piecewise linear functions. In this case, the asymptotical distribution of the

LASSO estimates (β̂0, β̂1, β̂2)
T is non-normal.

However, if 0 ≤ λ < 3, we can check that ((z0)2, (z0)4) /∈ C3
1 ∪ C4

1 and ((z0)3, (z0)5) /∈
C3

2 ∪ C4
2 , and therefore ΠK , G and (LK)−1 are all linear functions. We can check that

ΠK(h) =



1 0 0 0 0

0 1/2 0 1/2 0

0 0 1/2 0 1/2

0 1/2 0 1/2 0

0 0 1/2 0 1/2





h0

h1

h2

h3

h4


, where h = (h0, h1, h2, h3, h4)

T ∈ R5,
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L−1K (h) =



1/2 0 0 0 0

0 2/3 −1/3 −1/3 −1/3

0 −1/3 2/3 −1/3 −1/3

0 2/3 −1/3 5/3 −1/3

0 −1/3 2/3 −1/3 5/3





h0

h1

h2

h3

h4


, where h = (h0, h1, h2, h3, h4)

T ∈ R5,

and

Σ0 = Cov(F (β̃0, β̃1, β̃2, t̃1, t̃2, X, Y )) =



36 + 4λ2/3 0 0 0 0

0 36 + 7λ2/3 18 + 5λ2/3 0 0

0 18 + 5λ2/3 36 + 7λ2/3 0 0

0 0 0 0 0

0 0 0 0 0


In addition, by Theorem 1, we have

√
NLK(zN − z0)⇒ N (0,Σ0).

Therefore,

√
N((β̂0, β̂1, β̂2, t̂1, t̂2)

T − (β̃0, β̃1, β̃2, t̃1, t̃2)
T )⇒ ΠK ◦ (LK)−1N (0,Σ0).

By plugging in ΠK , (LK)−1 and Σ0, we have

√
N
(

β̂0

β̂1

β̂2

−

β̃0

β̃1

β̃2

)⇒ N(


0

0

0

 ,


9 + λ2/3 0 0

0 12 + 5λ2/9 −6− λ2/9
0 −6− λ2/9 12 + 5λ2/9

),
where β̂0, β̂1, β̂2 are the LASSO estimates and β̃0, β̃1, β̃2 are the population penalized parame-

ters. When λ = 0, the limiting distribution is the same as the distribution of the least squares

estimator.
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